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Cancer stem cells (CSCs) represent a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity and
the ability to give rise to the heterogenous lineages of malignant cells that comprise a tumor. CSCs possess multiple intrinsic
mechanisms of resistance to chemotherapeutic drugs, novel tumor-targeted drugs, and radiation therapy, allowing them to survive
standard cancer therapies and to initiate tumor recurrence and metastasis. Various molecular complexes and pathways that confer
resistance and survival of CSCs, including expression of ATP-binding cassette (ABC) drug transporters, activation of the Wnt/β-
catenin, Hedgehog, Notch and PI3K/Akt/mTOR signaling pathways, and acquisition of epithelial-mesenchymal transition (EMT),
have been identified recently. Salinomycin, a polyether ionophore antibiotic isolated from Streptomyces albus, has been shown to
kill CSCs in different types of human cancers, most likely by interfering with ABC drug transporters, the Wnt/β-catenin signaling
pathway, and other CSC pathways. Promising results from preclinical trials in human xenograft mice and a few clinical pilote
studies reveal that salinomycin is able to effectively eliminate CSCs and to induce partial clinical regression of heavily pretreated and
therapy-resistant cancers. The ability of salinomycin to kill both CSCs and therapy-resistant cancer cells may define the compound
as a novel and an effective anticancer drug.

1. Introduction

The demonstration of cancer stem cells (CSCs) in a variety
of human malignant tumors, including cancers of the blood,
breast, brain, bone, skin, liver, lung, bladder, ovary, prostate,
colon, pancreas, and head and neck has led to the conceptual
hypothesis that tumors, like physiologic proliferative tissues,
can be hierarchically organized and propagated by limited
numbers of stem cells [1–8]. According to a consensus def-
inition, these CSCs are cells within a tumor that possess the
capacity to self-renew and to give rise to the heterogeneous
lineages of cancer cells that comprise the tumor [9]. CSCs
can be defined experimentally by their ability to recapitulate
the generation of a continuously growing tumor in serial
xenotransplantation approaches [9]. It is not yet entirely
clear whether such tumorigenic cells identified and isolated
from hematopoietic and solid tumors by virtue of their
expression of specific cell surface markers [5, 7] are the real
“stem cells” of the tumor, but, although not readily testable,
the CSC concept of carcinogenesis and tumor maintenance

is fairly accepted to date [3–7]. Moreover, recent studies
provide evidence for the existence and relevance of CSCs in
clinical therapeutic situations [10–12].

CSCs possess numerous intrinsic mechanisms of resis-
tance to conventional chemotherapeutic drugs, novel tumor-
targeted drugs, and radiation therapy, including expression
of ATP-binding cassette (ABC) drug transporters [13–17],
activation of Wnt/β-catenin signaling [18–21], activation
of the Hedgehog and Notch signaling pathways [20–24],
expression and activation of the Akt/PKB and ATR/CHK1
survival pathways [25–27], aberrant PI3 K/Akt/mTOR-
mediated signaling and loss of phosphatase and tensin
homolog (PTEN) [28–30], amplified activity of aldehyde
dehydrogenase 1 (ALDH1) [31–34], amplified checkpoint
activation and efficient repair of DNA and oxidative damage
[35–40], constitutive activation of NF-κB [41–43], expres-
sion of CD133/prominin-1 and general radioresistance [35,
36, 44–46], protection from apoptosis by autocrine pro-
duction of interleukin-4 [47, 48], various mechanisms of
apoptosis resistance and defective apoptotic signaling [45,
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49, 50], metabolic alterations with a preference for hypoxia
[51], protection by microenvironment and niche networks
[28, 52, 53], radiation-induced conversion of cancer cells
to CSCs [54], immune evasion [55–57], acquisition of
epithelial-mesenchymal transition (EMT) [10, 24, 58, 59],
low proliferative activity [60], and, ultimately, transient or
long-termed quiescence, the latter also termed dormancy
[61–63]. Many of these CSC-specific mechanisms as well
as yet unknown mechanisms of immortality and resistance
[5, 64–66] allow CSCs to survive current cancer therapies
and to initiate reconstitution of the original tumor, long-
term tumor recurrence, and metastasis [10–12, 67–72].
Therefore, a deeper understanding of CSC biology as well
as the development, validation, and therapeutic use of novel
compounds and drugs that effectively eradicate CSCs is
urgently needed to improve clinical outcome in cancer.

2. The Challenge of Targeting CSCs and
Their Progeny

According to the cancer stem cell concept of carcinogenesis
[1, 3, 4, 7–9, 73], CSCs represent novel and translationally
relevant targets for cancer therapy, and the identification,
development, and therapeutic use of compounds and drugs
that selectively target CSCs are a major challenge for future
cancer treatment [5, 65, 74–76]. However, the goal for any
CSC-directed therapy should be the eradication of all CSCs
in a patient, and the efficacy of single agents targeting
CSCs may be limited by several factors. CSCs represent a
heterogenous population that may not be homogeneously
sensitive to a given anti-CSC agent [8, 77–79], and, under the
selection pressure of agents targeting CSCs, therapy-resistant
CSC clones may emerge [80]. Therefore, the eradication
of all CSCs will likely require targeting of more than one
intrinsic pathway operating in CSCs to reduce the probability
of escape mutants [74, 81–83]. Moreover, agents causing
tumor regression in advanced stages of cancer likely reflect
effects on the bulk tumor population but may have minimal
effect on the CSC population. In contrast, a CSC-specific
therapy would show modest effect on tumor growth of the
bulk tumor population in advanced stages of cancer but may
have substantial clinical benefit in early stages of cancer as
well as in neoadjuvant and adjuvant clinical settings [75].
Ultimately, cure of cancer will require the eradication of all
malignant cells within a patient’s cancer: CSCs and their
progeny.

Recent data obtained in vitro and in xenograft mice
bearing human cancers indicate that CSC targeting agents are
most effective in eradicating CSCs and their progeny when
these agents are combined with conventional cytostatic drugs
and/or novel tumor-targeted drugs [84–95]. Therefore it will
be important and promising to combine in sophisticated
clinical settings CSC targeting agents with novel tumor-
targeted drugs and conventional cytotoxic drugs. Such
combinations may act in concert to eradicate CSCs, more
differentiated progenitors, and bulk tumor cells in cancer
patients [87, 88, 96–101].

3. Compounds and Drugs That Target CSCs

Various compounds and drugs that selectively target CSCs
have been discovered recently [65, 74, 76, 106]. These agents
include microbial-derived and plant-derived biomolecules
[107–111], small molecule inhibitors targeting key compo-
nents of intrinsic signaling pathways of CSCs [30, 112–
114], antibodies directed against CSC-specific cell surface
molecules [115–117], and, surprisingly, some classical drugs,
such as metformin [94, 118–120], tranilast [76, 121], and
thioridazine [122] that have been used for decades for
the treatment of metabolic, allergic, and psychotic diseases,
respectively.

Although these compounds and drugs have been shown
to effectively target signaling pathways and/or molecules
selectively operating in CSCs, some of them are also capable
of killing other types and subpopulations of cancer cells,
which do not display CSC properties. In particular, the
biomolecules salinomycin and parthenolide as well as the
biguanide metformin have been demonstrated to induce
apoptosis in various types of human cancer cells [108, 123,
124], suggesting that these compounds may contribute to
the eradication of cancer more effectively than compounds
targeting either CSCs or regular cancer cells. Moreover,
the ionophore antibiotic salinomycin seems to have even
extended capabilities of eliminating cancer (Table 1), because
this compound has been demonstrated to effectively target
regular cancer cells [16, 125–127], highly multidrug and
apoptosis-resistant cancer cells [16, 85, 125], and CSCs [16,
84, 87, 88, 128–131].

4. From Broiler to Bedside:
A Brief History of Salinomycin

During the course of a screening program for new antibiotics
in the early seventies, Miyazaki and colleagues from the
research division of Kaken Chemicals Co., Ltd., Tokyo,
Japan isolated a new biologically active substance from
the culture broth of Streptomyces albus strain no. 80614
that was termed salinomycin [102]. The salinomycin-
producing organism was detected in and isolated from a
soil sample collected at Fuji City, Shizuoka Prefecture, Japan,
taxonomically classified as a member of the Streptomyces
albus genus (ROSSI-DORIA) WAKSMAN and HENRICI
and designated as the strain no. 80614 [102, 135]. The
production of salinomycin was carried out by tank fer-
mentation, filtration of the culture broth of Streptomyces
albus strain no. 80614, purification by column chromatog-
raphy on alumina/silica gel and subsequent elution. The
eluate was then concentrated in vacuo, dried, and finally
crystallized. By this isolation procedure, salinomycin was
obtained in the form of colourless prism of the sodium
salt [102]. Subsequently, it was demonstrated that salino-
mycin exhibits antimicrobial activity against Gram-positive
bacteria including Bacillus subtilis, Staphylococcus aureus,
Micrococcus flavus, Sarcina lutea, Mycobacterium spp., some
filamentous fungi, Plasmodium falciparum, and Eimeria
spp., protozoan parasites responsible for the poultry disease
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coccidiosis [102, 136, 137]. The chemical structure of salino-
mycin was determined by X-ray crystallographic analysis,
which revealed that salinomycin was a new member of the
family of the monocarboxylic polyether antibiotics [103],
(Figure 1).

Because other polyether antibiotics, such as monensin
and lasalocid, had previously been shown to exhibit effective
antimicrobial activities against Eimeria spp., the anticoccidial
estimation of salinomycin was carried out with chickens
infected with Eimeria tenella oocysts. Salinomycin was effec-
tive in reducing the mortality of chickens from coccidiosis
and in increasing average body weight of treated infected
chickens [102]. Thus, a patent had been issued for the use
of salinomycin to prevent coccidiosis in poultry [138], and,
up to today, salinomycin is used in broiler batteries and other
livestock as an anticoccidial drug and is also fed to ruminants
and pigs to improve nutrient absorption and feed efficiency
[136, 139–142].

In addition, salinomycin had early been shown to act
in different biological membranes, including cytoplasmic
and mitochondrial membranes, as a monovalent cation
ionophore with strict selectivity for alkali ions and a strong
preference for K+ [143], thereby promoting mitochondrial
and cytoplasmic K+ efflux and inhibiting oxidative phospho-
rylation [144, 145]. Similar to the monocarboxylic polyether
antibiotic monensin, which exhibits complex cardiovascular
effects due to its transport of Na+ across biological mem-
branes [146], salinomycin had been demonstrated by Press-
man and colleagues as a positive ionotropic and chronotropic
agent that increased cardiac output, left ventricular systolic
pressure, heart rate, mean arterial pressure, coronary artery
vasodilatation and blood flow, and plasma catecholamine
concentration [147]. These results had been obtained in
experiments with mongrel dogs that had received a single
intravenous injection of 150 μg·kg−1 salinomycin [147]. The
total synthesis of the salinomycin molecule was achieved
in 1998 [148], and amide derivatives of salinomycin with
activity against Gram-positive bacteria and methicillin-
resistant Staphylococcus aureus have been synthesized very
recently [149].

However, for several reasons, salinomycin has never been
established as a drug for human diseases until now. In
particular, several reports and studies published in the last
three decades revealed a considerable toxicity of salinomycin
in mammals, such as horses, pigs, cats, and alpacas after
accidental oral or inhalative intake [150–154]. A case of an
accidental inhalation and swallowing of about 1 mg·kg−1

salinomycin by a 35-year-old male human revealed severe
acute and chronic salinomycin toxicity with acute nausea,
photophobia, leg weakness, tachycardia and blood pressure
elevation and a chronic (day 2 to day 35) creatine kinase
elevation, myoglobinuria, limb weakness, muscle pain, and
mild rhabdomyolysis [155]. Risk assessment data recently
published by the European Food Safety Authority declare
an acceptable daily intake (ADI) of 5 μg·kg−1 salinomycin
for humans, because daily intake of more than 500 μg·kg−1

salinomycin by dogs leads to neurotoxic effects, such as
myelin loss and axonal degeneration [156].
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HO

Figure 1: Structural formula of salinomycin. The pentacyclic
molecule with a unique tricyclic spiroketal ring system has a mass
of 751 Da, a molecular formula of C42H70O11, a melting point of
113◦C, and a UV absorption at 285 nm. Adapted from [102, 103],
with permission from Elsevier B.V.

In view of this considerable toxicity in mammals, sali-
nomycin has only been used for more than 30 years as a
coccidistat and growth promoter in livestock, but, in terms of
human drug development salinomycin rested in dormancy.
Until in 2009 a seminal study by Gupta and colleagues
revealed that salinomycin selectively eliminates human breast
CSCs in mice [128]. A follow-up publication demonstrated
that salinomycin induces massive apoptosis in human cancer
cells of different origin that display multiple mechanisms of
drug and apoptosis resistance [125]. Based on these findings,
salinomycin was therapeutically applicated “first-in-man” in
2010, in the context of a pilote clinical trial with a small
cohort of patients with metastatic breast, ovarian, and head
and neck cancers [104]. Intravenous administration of 200–
250 μg·kg−1 salinomycin every second day for three weeks
resulted in partial regression of tumor metastasis and showed
only minor acute and long-term side effects, but no severe
acute and long-term side effects observed with conventional
chemotherapeutic drugs [104]. Consequently, a phase I/II
clinical trial with VS-507 (a proprietary formulation of
salinomycin produced by Verastem Inc., Cambridge, MA,
USA) in patients with triple negative breast cancer is
envisioned to start in 2013. However, it is actually unclear
whether salinomycin will be used routinely for the treatment
of cancer patients in the very next years.

5. Salinomycin as a Drug for Targeting CSCs

It was a great surprise when Gupta and colleagues showed
in 2009 that salinomycin selectively kills human breast
CSCs [128]. In a sophisticated experimental approach, the
authors used triple oncogenic transformed and immortalized
human mammary epithelial cells (termed HMLER), in which
knockdown of E-cadherin by RNA interference resulted in
the generation of cells undergoing epithelial-mesenchymal
transition (EMT), a latent embryonic program that can
endow cancer cells with migratory, invasive, self-renewal
and drug resistance capabilities [157–160]. These human
breast cancer stem-like cells (termed HMLER-shEcad) that
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displayed characteristic properties of CSCs were capable of
forming tumorspheres in suspension cultures (a standard
clonogenic assay for the detection of self-renewal of CSC,
[9]), showed high and low expression of CD44 and CD24,
respectively, and exhibited resistance to chemotherapeutic
drugs and cytotoxic agents, such as paclitaxel, doxorubicin,
actinomycin D, campthotecin, and staurosporine [128].
In a high-throughput screening approach, about 16,000
compounds from chemical libraries, including biological
molecules and natural extracts with known bioactivity, were
tested for activity and toxicity against HMLER-shEcad cells
and control cells that had not undergone EMT. From
a pool of 32 promising candidates, only one compound
markedly and selectively reduced the viability of breast
cancer stem-like HMLER-shEcad cells: salinomycin. It was
further demonstrated that salinomycin, in contrast to the
anti-breast cancer drug paclitaxel, selectively reduces the
proportion of CD44high/CD24low CSCs in cultures of mixed
populations of HMLER-shEcad cells and control cells that
had not undergone EMT. In addition, pretreatment of
HMLER-shEcad cells with salinomycin resulted in inhibition
of HMLER-shEcad-induced tumorsphere formation, which
was not observed after pretreatment of the cells with
paclitaxel [128]. Using comparative global gene expres-
sion profiling, it was shown that, in CD44high/CD24low

HMLER cells, salinomycin, but not paclitaxel, was capable of
changing gene expression signatures characteristic of breast
CSCs or mammary epithelial progenitor cells isolated from
human breast cancers. In particular, expression of genes
that inversely correlates with metastasis-free survival, overall
survival, and clinical outcome of breast cancer patients [161,
162] was downregulated by salinomycin. Expression of a set
of genes that promote the expansion of mammary epithelial
stem cells and the formation of tumorspheres [163] was
also markedly downregulated by salinomycin but not by
paclitaxel. In contrast, genes involved in mammary epithe-
lial differentiation that encode membrane-associated and
secreted proteins of the extracellular matrix were upregulated
by salinomycin [128]. Finally, as a proof of principle, it was
demonstrated that salinomycin inhibits the ability of breast
CSCs to form tumors in mice. Pretreatment of HMLER cells
for 7 days with salinomycin and subsequent serial limiting
dilution and injection of the cells into NOD/SCID mice
resulted in a >100-fold decrease in tumor-seeding ability,
relative to pretreatment of the cells with paclitaxel. Finally,
salinomycin treatment of NOD/SCID mice with human
breast cancers (xenograft mice) resulted in a reduction of the
tumor mass and metastasis, and explanted tumors showed
a reduced number of breast CSCs as well as an increased
epithelial differentiation [128].

According to the primary finding that salinomycin
induces massive apoptosis in human cancer cells that display
different mechanisms of drug and apoptosis resistance [125],
a subsequent study demonstrated that salinomycin is able
to overcome ABC transporter-mediated multidrug resistance
and apoptosis resistance in human acute myeloid leukemia
stem cells (AML SCs) [16]. One of the most important mech-
anism of drug resistance in leukemia SCs and other CSCs

is the expression of ABC transporters belonging to a highly
conserved superfamily of transmembrane proteins capable of
exporting a wide variety of macromolecules and structurally
unrelated chemotherapeutic drugs from the cytosol, thereby
conferring multidrug resistance, which is a major obstacle
in the success of cancer chemotherapy [14, 17, 164, 165].
As demonstrated in the study, expression of functional ABC
transporters, such as P-glycoprotein/MDR1, ABCG2/BCRP,
and ABCC11/MRP8 in human KG-1a AML SCs confers
resistance of the cells to various chemotherapeutic drugs,
including cytosine arabinoside, doxorubicin, gemcitabine,
5-fluorouracil, topotecan, etoposide, and bortezomib, but
not to salinomycin, which was capable of inducing massive
apoptosis in KG-1a AML SCs [16]. Of note, salinomycin
did not permit long-term adaptation and development of
resistance of KG-1a AML SCs to apoptosis-inducing con-
centrations of salinomycin, whereas the cells could readily
be adapted to survive and to proliferate in the presence of
initially apoptosis-inducing concentrations of doxorubicin
and bortezomib [16], (Figure 2).

These findings strongly suggest that salinomycin is
capable of targeting breast CSCs and AML SCs, and a
series of recent studies show similar effects of salinomycin
in other types of CSCs. In gastrointestinal stromal tumors
(GISTs), the most common gastrointestinal sarcomas, a
subpopulation of cells expressing CD44, CD34, and low Kit
(activating stem cell factor receptor) have been identified
as cells with self-renewal and tumorigenic capabilities [84].
These Kitlow CD44+ CD34+ CSCs are resistant to inhibition
of proliferation by imatinib, a tyrosine kinase inhibitor
targeting oncogenic kit signaling that is commonly used in
the treatment of metastatic GIST [84, 166]. By contrast,
salinomycin nearly completely inhibited the proliferation of
Kitlow CD44+ CD34+ CSCs without causing apoptosis, and
salinomycin also promoted differentiation of the cells, as evi-
denced by the occurrence of multipolarity and a fibroblast-
like morphology [84]. However, a combined treatment of
the cells with imatinib and salinomycin caused a significantly
greater inhibition of proliferation than salinomycin alone
[84]. Thus, the study demonstrates that salinomycin is able
to inhibit proliferation and to induce differentiation of GIST
CSCs and also suggests that a combination of salinomycin
and imatinib may provide therapeutic benefit in patients
with GIST.

Similar results were obtained with CD44+ CD24−
ALDH1+ breast CSCs isolated from the human breast cancer
cell line MCF-7. In CD44+ CD24−ALDH1+ MCF-7-derived
breast CSCs, salinomycin was capable of markedly reducing
the tumorsphere formation of the cells and the percentage of
ALDH1+ expressing cells by nearly 50-fold [85]. Treatment
of the cells with salinomycin as well as combined treatment
with the cytostatic drug doxorubicin and salinomycin, but
not treatment with doxorubicin alone, reduced the cloning
efficiency by 10–30-fold and markedly increased apoptosis in
CD44+ CD24− ALDH1+ breast CSCs [85]. Similar results
were obtained recently with MCF-7-derived breast CSCs
and HER2-expressing breast cancer cells that were more
effectively killed by the combination of salinomycin and
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Figure 2: Salinomycin does not permit long-term adaptation and
development of resistance of KG-1a AML SCs to apoptosis-inducing
concentrations of salinomycin (Sal, 10 μM), whereas the cells could
be readily adapted to survive and to proliferate in the presence of
initially apoptosis-inducing concentrations of doxorubicin (Dox,
0.5 μg/mL) and bortezomib (Bor, 12.5 nM). After 12 weeks of
culturing in the presence of 12.5 nM Bor, 0.5 μg/mL Dox, 10 μM
Sal, or DMSO 5% (v/v), proliferation of the cells was determined
by [3H] thymidine incorporation for 24 h. White bars: KG-1a AML
SCs; grey bars: KG-1a AML cells; black bars: KG-1 AML cells.
Inserts show invert microscopic pictures (400x) of KG-1a AML SCs
cultured for 12 weeks in the presence of the drugs noted below. Size
bars are 50 μm. Adapted from [16], with permission from Elsevier
B.V.

the anti-HER2 antibody trastuzumab than by salinomycin
or trastuzumab alone [86], providing further evidence that
salinomycin alone and particularly in combination with
conventional anticancer drugs effectively targets CSCs.

Salinomycin has recently been shown to target CSCs in
different types of human cancers, including gastric cancer
[131], lung adenocarcinoma [130], osteosarcoma [132],
colorectal cancer [129], squamous cell carcinoma (SCC)
[133], and prostate CSCs [134], suggesting that salinomycin
may be effective in CSCs of many, if not all, types of human
cancers, although it is currently not known whether all
cancers contain subpopulations of CSCs.

In ALDH1+ gastric CSCs, which displayed resistance
to the conventional chemotherapeutic drugs 5-fluorouracil
and cisplatin, salinomycin effectively inhibited tumorsphere
formation, proliferation, and viability of the cells [131].
Similar results were obtained in ALDH1+ CSCs derived
form lung adenocarcinoma cells [130] and in osteosarcoma
CSCs [132]. In colorectal cancer cells and in squamous cell
carcinoma (SCC) cells, salinomycin, but not oxaliplatin or
cisplatin, was able to significantly reduce the proportion of
CSCs, as detected in tumorsphere assays [129, 133] and in
human SCC xenograft mice [133].

As noted above, cure of cancer requires the eradication
of all cell types within a cancer, namely, CSCs, more differ-
entiated progenitors and the bulk tumor cell population that
might be achieved by combining CSC targeting agents with
conventional cytotoxic drugs [74, 75, 83]. This hypothesis
received substantial support from recent studies showing that
salinomycin in combination with a conventional cytotoxic

drug eradicates human cancers in xenograft mice much
more efficiently than the single agent [87, 88]. In particular,
salinomycin inhibited the growth of CD133+ pancreatic
CSCs in tumorsphere formation assays, while the cytotoxic
drug gemcitabine, a nucleoside analog commonly used
in the treatment of metastatic pancreatic cancer, induced
marked apoptosis in non-CSC 133-pancreatic cancer cells
[87]. Consistently, salinomycin combined with gemcitabine
eradicated human pancreatic cancer in xenograft mice much
more efficiently than either salinomycin or gemcitabine
alone [87]. Similar results were obtained in a study using
CD44+ CD24− breast CSCs sorted from the human breast
cancer cell line MCF-7 [88]. Salinomycin more efficiently
inhibited the proliferation of CD44+ CD24− breast CSCs
than of the parental MCF-7 cells, and salinomycin was able
to induce significant tumor regression and to reduce the
number of CD44+ CD24− breast CSCs in tumors established
by MCF-7 cells in xenograft mice [88]. Of note, salinomycin
in combination with paclitaxel almost completely eradicated
the MCF-7 tumors in xenograft mice [88].

There is growing evidence that salinomycin not only tar-
gets CSCs, but also kills more differentiated non-CSC tumor
cells and, most importantly, cancer cells that display efficient
mechanisms of resistance to cytotoxic drugs, radiation, and
induction of apoptosis. Salinomycin has been shown to
induce massive apoptosis in acute T-cell leukemia cells [125]
and chronic lymphocytic leukemia cells [126] isolated from
leukemia patients but failed to induce apoptosis in normal
human T cells and peripheral blood lymphocytes isolated
from healthy individuals [125, 126]. In different human can-
cer cells exhibiting resistance to cytotoxic drugs, radiation,
and apoptosis, salinomycin has been demonstrated to induce
significant apoptosis and to increase DNA damage [89, 125,
167]. As in the case of breast CSCs, pancreatic CSCs, and
GIST CSCs [84–88], salinomycin is able to enhance in regular
cancer cells the cytotoxic effects of conventional cancer
drugs and novel tumor-targeted drugs, such as doxorubicin,
gemcitabine, etoposide, paclitaxel, docetaxel, vinblastine,
and trastuzumab [86, 87, 89, 90], envisioning a central role
for salinomycin-based combination therapies in the future
treatment of cancer [109].

6. Mechanisms of Salinomycin’s
Action against CSCs

Although the exact mechanisms underlying the elimination
of CSCs by salinomycin remain poorly understood, recent
work has contributed to an increased understanding of some
mechanisms and modes of action of salinomycin in human
CSCs and cancer cells.

6.1. Induction of Apoptosis and Cell Death. It has been shown
that salinomycin induces apoptosis in CSCs of different
origin [16, 85, 132], but the particular mechanisms of
apoptosis induction by salinomycin in CSCs remain unclear
and may differ among the cell type, as demonstrated
for cancer cells of different origin [89, 90, 125, 127]. In
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particular, salinomycin-induced apoptosis in human KG-
1a AML SCs and Molt-4 T-cell leukemia cells is caspase
independent [16, 125], whereas salinomycin has been shown
to activate the mitochondrial pathway of apoptosis and
the caspase-3-mediated cleavage of PARP in human PC-3
prostate cancer cells [127]. Salinomycin is able to generate
reactive oxygen species (ROS) in prostate cancer cells [127,
134]. Interestingly, salinomycin-mediated generation of ROS
leads to apoptosis in PC-3 prostate cancer cells [127],
whereas VCaP and LNCaP prostate cancer cells display
growth inhibition but not apoptosis induction in response
to salinomycin-induced ROS generation [134]. Salinomycin-
induced apoptosis is not accompanied by cell cycle arrest in
human Molt-4 leukemia cells [125] that is rather unusual,
because, in many types of cancer cells, cell cycle arrest
precedes apoptosis induced by different agents. Notably,
to date there is only one report available showing that
salinomycin induces rather nonapoptotic cell death than
apoptotic cells death, as demonstrated by the loss of viability
and weak cleavage of PARP in human Hs578T breast cancer
cells exposed to salinomycin [90]. However, combination
treatment of the cells with salinomycin and paclitaxel or
salinomycin and docetaxel resulted in the induction of
marked cleavage of PARP and induction of apoptosis that
was not observed after treatment of the cells with either
drug alone [90]. These data suggest that induction of
apoptosis or nonapoptotic cell death by salinomycin in
cancer cells seems to be dependent on the particular cell type
investigated, and the detailed mechanisms of salinomycin-
induced apoptosis and nonapoptotic cell death in cancer
cells are far from being clear to date. Salinomycin has been
shown to induce apoptosis in CSCs derived from human
acute myeloid leukemia cells [16], breast cancer cells [85],
and osteosarcoma cells [132]. Whether salinomycin is able
to induce apoptosis or rather nonapoptotic cell death in
CSCs derived from other types of human cancers is currently
unknown.

6.2. Interference with ABC Transporters. It is evident that sali-
nomycin is refractory to the action of ABC transporters since
salinomycin is able to overcome ABC transporter-mediated
multidrug resistance in AML SCs [16]. Salinomycin is a
751 kDa transmembrane K+ ionophore which is rapidly
embedded in biological membranes such as the cytoplasmic
and mitochondrial membrane [144]. ABC transporters also
constitute transmembrane macromolecules that extrude a
variety of substrates from the cytosol [14, 17, 164]. Therefore
it is unlikely that salinomycin becomes a substrate of
ABC transporters [16]. Moreover, salinomycin has been
demonstrated to be a potent inhibitor of the ABC transporter
P-glycoprotein/MDR1 in different cancer cells [167, 168].

6.3. Activation of the Wnt/β-Catenin Signaling Pathway.
Constitutive activation of the Wnt/β-catenin signaling path-
way is essential for maintenance, clonogenicity and other
specific characteristics of CSCs [18–21, 169, 170] and, most
importantly, Wnt/β-catenin signaling confers resistance of
CSCs to radiation [171, 172] and to anticancer drugs [18,

19]. Salinomycin, however, has been shown to inhibit in
chronic lymphocytic leukemia cells proximal Wnt signaling
by reducing the levels of the Wnt coreceptor LRP6 and by
downregulating the expression of the Wnt target genes LEF1,
cyclin D1, and fibronectin, finally leading to apoptosis [126].

6.4. Inhibition of Oxidative Phosphorylation. Most cancer
cells rely more on aerobic glycolysis than on oxidative phos-
phorylation (the Warburg effect) [173], but, for instance,
malignant transformation of human mesenchymal stem cells
is linked to an increase of oxidative phosphorylation [174].
Moreover, glioma CSCs have been shown to mainly rely on
oxidative phosphorylation [175], suggesting that inhibition
of metabolic pathways, such as oxidative phosphorylation,
is a promising strategy to target CSCs. In this context,
salinomycin is known to inhibit oxidative phosphorylation
in mitochondria [144] that may contribute to the elimination
of CSCs by salinomycin.

6.5. Cytoplasmic and Mitochondrial K+ Efflux. Salinomycin
is a K+ ionophore that interferes with transmembrane K+

potential and promotes the efflux of K+ from mitochondria
and cytoplasm [143–145]. Expression of K+ channels has
been documented in CD34+/CD38− AML SCs and in
CD133+ neuroblastoma CSCs, but not in their nontumori-
genic counterparts [176, 177], suggesting an important role
of K+ channels in CSC maintenance. Moreover, a decrease in
intracellular K+ concentration by pharmacological induction
of K+ efflux is directly linked to the induction of apoptosis
and cytotoxicity in cancer cells [178, 179], suggesting
that mitochondrial and cytoplasmic K+ efflux induced by
salinomycin leads to apoptosis in CSCs.

6.6. Differentiation of CSCs. Finally, salinomycin is able to
promote differentiation of CSCs and to induce epithelial
reprogramming of cells that had undergone EMT [84,
128]. This is in concert with the finding that salinomycin
upregulates the expression of genes involved in mammary
epithelial differentiation [128]. Thus, salinomycin might
target and eliminate CSCs by multiple mechanisms of which
only a few are currently known. Future research may uncover
an increasing number of relevant mechanisms of targeting
CSCs by salinomycin.

7. Selected Case Reports from
Clinical Pilote Studies

7.1. Case 1. 40-Year-Old Female Patient with Metastatic
(Bone and Subcutaneous) Invasive Ductal Breast Cancer.
Diagnosis, histopathology, and first staging were obtained
after mastectomy and axillary lymph node dissection 30
month before salinomycin treatment: invasive ductal breast
carcinoma. TNM staging: pT1c, pN0, M0, G2. Estrogen
receptor (ER): 40% expression, progesterone receptor (PR):
30% expression, HER2 score: 1+. After induction therapy
with six cycles of polychemotherapy with 5-fluorouracil,
epirubicin, and cyclophosphamid and subsequent pitu-
itary gonadotropin blockade with leuprorelin, the patient
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experienced vertebral bone metastasis and a subcutaneous
multifocal thoracal tumor recidive (histopathology: ER, PR,
and HER2 negative, “triple negative”), which was widely
resected. The half thorax was subsequently irradiated with a
cumulative dose of 50.4 Gy, and a latissimus dorsi myocuta-
neous flap was used for breast reconstruction. Three month
before salinomycin treatment, the patient displayed in the
contralateral breast an invasive ductal triple negative breast
carcinoma with axillary lymph node metastases that was
treated with radiation (cumulative dose 50.4 Gy). Because
of poor therapeutic response and exhausted therapeutic
options, an experimental therapy with salinomycin was
recommended. After informed consent, the patient received
12 intravenous administrations of 200 μg·kg−1 salinomycin
every second day. As shown in Figure 3, systemic salinomycin
therapy induced a marked regression of the subcutaneous
thoracal metastases. A biopsy of the regressive subcutaneous
thoracal metastases was obtained after 12 cycles of salino-
mycin therapy, and the specimen was investigated by molec-
ular histopathology. As determined by TdT-mediated dUTP
nick end labeling (TUNEL) histopathology, ∼85% of the
cells had undergone apoptosis. Moreover, the serum levels of
the tumormarkers Ca 15-3 (cut off <31 U/mL) and CEA (cut
off <3.4 ng/mL) declined from 14.3 U/mL and 50.8 ng/mL
before salinomycin therapy to 7.2 U/mL and 15.5 ng/mL after
salinomycin therapy, respectively. Intravenous salinomycin
therapy resulted in minor acute side effects, including tachy-
cardia and mild tremor for 30–60 min. after administration
but lacked severe and long-term side effects observed with
conventional chemotherapeutic drugs, such as myelodepres-
sion, neutropenia, alopecia, nausea and vomiting, or gas-
trointestinal, thromboembolic, and neurological side effects.
Similar results of salinomycin-induced partial tumor and
metastasis regression were obtained in three other patients
with metastatic breast cancer, one patient with metastatic
ovarian cancer, and one patient with metastatic head and
neck squamous cell carcinoma.

7.2. Case 2. 82-Year-Old Female Patient with Advanced and
Metastatic (Pelvic Lymphatic Metastasis) Squamous Cell
Carcinoma of the Vulva. Diagnosis, histopathology, and first
staging were obtained after radical vulvectomy and bilateral
pelvic lymph node dissection 18 month before salinomycin
treatment: pT1b, pN2b, M0, G2. Subsequently, pelvic and
inguinal irradiation with a cumulative dose of 59.4 Gy was
performed. Ten month later, the patient experienced a local
recidive, which was surgically removed, and histopathology
revealed that the recurrent tumor was less differentiated
(G3) than the initial tumor (G2). Four month later, the
patient experienced again a local recidive which was treated
with radiotherapy with a cumulative dose of 39 Gy. Because
local tumor progression occurred after the radiotherapy,
the patient was treated with 150 mg/day erlotinib (an orally
epithelial growth factor receptor tyrosine kinase inhibitor)
for 30 days. The treatment with erlotinib resulted in a slow
but significant disease progression as determined by clinical
inspection of the local tumor and elevation of the serum
levels of the tumor marker SCC. Because of poor therapeutic

response and exhausted therapeutic options, an experimen-
tal therapy with salinomycin combined with erlotinib was
recommended. After informed consent, the patient received
14 intravenous administrations of 200 μg·kg−1 salinomycin
every second day combined with 150 mg erlotinib every
day for 30 days. This simultaneous combination therapy
resulted in significant tumor regression as determined by
clinical inspection of the local tumor and decrease of SCC
serum levels from 11.3 ng/mL before therapy to 0.13 ng/mL
after therapy (cut off SCC: <1.9 ng/mL). Three month after
administration of the combination therapy (salinomycin
and erlotinib for 30 days), the patient displayed significant
tumor progression as determined by clinical inspection
and elevation of SCC serum levels to 3.2 ng/mL (Figure 4).
The patient refused a further therapy containing erlotinib
due to marked adverse effects of erlotinib (fatigue, nausea,
anorexia, and inappetance) experienced during initial ther-
apy with salinomycin combined with erlotinib. Therefore,
the patient received 12 intravenous administrations of
250 μg·kg−1 salinomycin every second day, without addition
of erlotinib. This monotherapy with salinomycin resulted
in stable disease and no progression for 4 months, as
determined by clinical inspection of the local tumor and
no significant changes of SCC serum levels (Figure 4). As
observed in case 1, intravenous therapy with 250 μg·kg−1

salinomycin every second day resulted in minor acute side
effects, including tachycardia and mild tremor for 30–
60 min. after administration but lacked severe and long-term
side effects, such as myelodepression, neutropenia, alopecia,
nausea and vomiting, or gastrointestinal, thromboembolic,
and neurological side effects.

8. Conclusions

Work from the last few years highlights the possibility of
selectively targeting CSCs, which are regarded as the major
culprits in cancer. However, although the rather novel CSC
concept of carcinogenesis is fairly accepted to date, more
classical mechanisms and driving forces of carcinogenesis,
including genome instability, epigenetic modifications, first
oncogenic hit(s), clonal evolution, replicative immortality,
invasion and metastasis, immune evasion, reprogramming of
energy metabolism, and most probably, a complex interplay
of all of these mechanisms must be considered as a basis
for defining carcinogenesis and cancer in general [73, 80,
180–185]. Nevertheless, in line with the CSC concept of
carcinogenesis [1, 3, 4, 7–9, 73], CSCs constitute adequately
characterized cells and represent novel and translationally
relevant targets for cancer therapy [5, 65, 74, 75].

Significant advances have been made recently in the
discovery, development, and validation of novel compounds
and drugs that target CSCs, and the future clinical use
of these novel agents may represent a powerful strategy
for eradicating CSCs in cancer patients, thereby preventing
tumor recurrence and metastasis, and, hopefully, contribut-
ing to the cure of cancer. There is growing consensus that
conventional cytotoxic drugs are unable to eradicate CSCs
[5, 12, 64, 74], and, more disturbing, CSCs can be even
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Figure 3: Breast cancer metastasis regression by salinomycin. Orthotopic subcutaneous metastases after mastectomy in a 40-year-old female
patient (see Section 7.1 . Case 1) with metastatic invasive ductal breast carcinoma, triple negative (estrogen receptor: negative, progesterone
receptor: negative, HER2: negative). (a) before, (b) after 12 intravenous administrations of 200 μg·kg−1 salinomycin every second day.
Adapted from [104].
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Figure 4: Serum levels of the tumor marker SCC (squamous cell carcinoma antigen) determined in an 82-year-old female patient with
advanced vulvar carcinoma (see Section 7.2 . Case 2) at various time points: at tumor progression after 150 mg/day erlotinib for 30 days
(progression after Erlo); at tumor regression 2 weeks after 14 intravenous administrations of 200 μg·kg−1 salinomycin every second day
combined with 150 mg erlotinib every day for 30 days (2 weeks after Sal/Erlo); at tumor progression 3 months after 14 intravenous
administrations of 200 μg·kg−1 salinomycin every second day combined with 150 mg erlotinib every day for 30 days (3 months after Sal/Erlo);
at stable disease 2 weeks, 4 weeks, and 4 months after 12 intravenous administrations of 250 μg·kg−1 salinomycin every second day, without
addition of erlotinib (2 weeks, 4 weeks, and 4 months after Sal). Adapted from [105].

selectively enriched by these drugs, as demonstrated in breast
cancer patients receiving systemic chemotherapy comprising
conventional cytotoxic drugs [10, 67, 68, 186]. Moreover,
many novel tumor-targeted drugs, including tyrosine kinase
inhibitors and monoclonal antibodies raised against tumor-
specific cell surface proteins, also fail to eliminate CSCs
[70, 95, 187–189], so that there is an urgent need for novel
compounds and drugs that effectively target CSCs for the use
in elaborated clinical settings and preferably in combination
with conventional cytostatic drugs and novel tumor-targeted
agents.

In this context, one promising candidate drug is the
ionophor antibiotic salinomycin, which has recently been
documented to effectively eliminate CSCs in different types
of human cancers in vitro and in xenograft mice bearing

human cancers [87, 88, 128, 133]. To date it is not entirely
clear by which mechanisms salinomycin eliminates CSCs,
but it is important to note that salinomycin, in combination
with conventional cytotoxic drugs, is much more effective
in eradicating human cancers in xenograft mice than the
single agent alone [87, 88]. This is in accord with the
postulation that efficient cancer therapy should target all
cancer cell populations, including CSCs, more differentiated
progenitors, and bulk tumor cells that might be achieved by
combining CSC targeting agents with conventional cytotoxic
drugs, novel tumor-targeted drugs, and radiation therapy
[5, 74, 82].

Importantly, salinomycin is not only able to kill CSCs,
but also regular tumor cells and highly indolent tumor
cells displaying resistance to cytotoxic drugs, radiation, and
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induction of apoptosis [85, 125, 167], hence salinomycin can
be regarded as a triple-edged sword against cancer. This is
in line with results from a few clinical pilote studies revealing
that salinomycin is able to induce partial clinical regression of
heavily pretreated and therapy-resistant cancers, particularly
in combination with novel tumor-targeted drugs [104, 105].
More work is required to define the exact mechanisms of
salinomycin’s action against CSCs, to estimate its long-term
safety in humans, and finally, to exploit its probably huge
therapeutic potential in combination with other drugs in all
stages of human cancer.
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